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A new algorithm is presented which provides estimates of impulse responses in
rooms. It is applicable to arbitrary shaped rooms, thus including non-di!use spaces
like workrooms or o$ces. In the latter cases, for instance, sound propagation
curves are of interest to be applied in noise control. In the case of concert halls and
opera houses, the method enables very fast predictions of room acoustical criteria
like reverberation time, strength or clarity. The method is based on a low-resolved
ray tracing and recording of the free paths. Estimates of impulse responses are
derived from evaluation of the free path distribution and of the free path transition
probabilities.
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1. INTRODUCTION

Geometrical acoustics is by far the most successful technique for prediction of
sound "eld parameters in large rooms. Although it is not an exact "eld theory, it
provides reasonable estimates of sound "elds in enclosures. Investigations of the
history of sound rays travelling in rooms were the basis for statistical reverberation
theory and thus for Sabine's and Eyring's equations. Sound propagation is usually
considered as a re#ection sequence with energy loss of (1!a) per re#ection and
a global energy loss of
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(1!a)v"w

0
exp (v ln(1!a6 )) (1)

with v denoting the number of re#ections and a6 the mean absorption coe$cient.
Usually, v is set proportional to the mean re#ection rate nN according to
v"nN t"ct/lM , assuming the free paths lM"c/nN equally long. The decay constant of
the exponential function in a room with volume < and surface S is thus nN ln(1!a6 )
with the well-known nN "cS/4< in the &&di!use "eld'' [1]. The validity of di!use "eld
conditions has been discussed very intensively in the literature. After all, it can be
stated that simple di!use "eld theory never applies exactly, but gives reasonable
estimates in by far the most cases. From the expectation value of the energy density
impulse response
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one can derive the steady state energy density (P"sound power,
A"!S ln(1!a6 ))

w
diffuse

"4P/cA (3)

and the reverberation time ¹ in s (with < in m3 and A in m2)

¹"0)16</A. (4)

If, however, the free paths are quite di!erent as, for instance, in an extremely #at
room, it is no news that equation (1) and hence, Eyring's expectation value for the
reverberation time is not correct (see Figure 1).

This problem was investigated by Kuttru! [2], who derived a correction term for
Eyring's equation, which depends on the variance of the free path distribution and
hence*at least partly*on the room shape. Barron and Lee [3] derived estimates
for room acoustical criteria from exponential decay curves based on the
reverberation time ¹. Adding direct sound energy makes receiver-dependent results
possible. Clarity and strength, for instance, can be calculated rather easily by using
¹ and the room volume (usually called &&Barron's revised theory''). This approach is
enhanced further by improving the interpretation of the exponential function in
order to obtain a better estimate of the relation between sound power and the total
Figure 1. Relation between room shape and free paths, top: &&normally'' shaped room, bottom: #at
room. The lengths of free paths are recorded and put into an order according to their length.
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sound energy in the room [4],

w
diffuse

"(4P/cA)e~A@S, (5)

which might be used also in combination with the revised theory described by
Barron and Lee. The improvements of the statistical reverberation theory based on
mean values and variances, however, cannot be expected to give much more
information than expressed in equation (1)}(5).

On the other hand, advanced room acoustical computer simulations can be used
to create room impulse responses at any point in a room quite accurately, provided
geometrical acoustics apply (su$cient at not too low frequencies). The drawback of
the latter method is that substantial calculation is required for generating impulse
responses.

The approach reported here is based on the idea that the room shape and the
wall scattering are related with a speci"c free path distribution [5]. The
distribution, however, is accounted for with its full statistical content without
aiming at mean values of variances, and it is obvious that the free path distribution
and corresponding transition probabilities can very easily be found by ray tracing.
The number of rays necessary to obtain the data is very small compared to that for
the conventional algorithm.

2. THEORY

The free path distribution and the corresponding free path transition distribution
of sound rays can easily be determined by ray tracing. The distribution can be
expressed by means of a matrix which contains the free paths and the absorption
coe$cients involved in the re#ections (see Figure 2).
Figure 2. Matrix of statistical distribution of free path lengths and absorption coe$cients.
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Imagine a #at room with di!erent path lengths and absorption of re#ections
between #oor and ceiling and between walls (see Figure 1, bottom). The decay
process can be divided into sub-processes of decays with each having individual
decay constants n

i
ln(1!a

j
) with n

i
and a

j
denoting a category of re#ection rates

(free paths) and absorption coe$cients respectively. Each category contributes to
the global energy in the room. It is related with an exponential decay component
w
ij

w
ij
(t)"w
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and with a total energy density proportional to
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It is clear that ergodicity is a basic assumption because the time history of rays is
estimated from the global spatial distribution of free paths.

3. TRANSITION PROBABILITY

Now, a further problem must be solved because the sub-processes ij are not
closed. A certain energy transition between the processes occurs. In the case of
specular re#ections between parallel walls the transition probability might be small
since the re#ection paths stay within their group for a long time. If, however, di!use
scattering is involved, energy may jump from one category into another with
a rather high probability. To achieve the possibility of accounting for the transition,
the matrix scheme is extended by another dimension: the free paths before and after
each re#ection in columns and rows respectively (see below, the example in
Figure 5). The absorption coe$cients can be addressed to other dimensions. The
vector obtained after summation over columns (or rows) forms the general free path
distribution, as given in reference [2].

The modi"ed formalism of construction of impulse responses is illustrated in
Figure 3. The energy category w

ij
(t) is generally following the law described by

equation (6), but it su!ers from energy loss according to the transition matrix
elements corresponding to ijPi @j @, and, vice versa, it receives energy according to
the sum over the row of the transition matrix Ri@j@Pij. In a "rst approach, the
energy can be transferred in discrete steps according to the individual free path
delays (see Figure 3). Several other variants may be investigated in future.

Finally, the total energy density in J/m3 is obtained after adding the
receiver-dependent direct sound to the &&room sound "eld'' (r is the distance
source-receiver, P the sound power and C the constant for normalization of direct
and re#ected sound):
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Figure 3. Individual and global decay processes with transition between free path and absorption
categories.
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The normalization constant C depends on the choice of the speci"c ray-tracing
method. In the case of global tracing (without speci"c receivers, N is the number of
rays used, t

max
the upper temporal limit of tracing each ray),

C
total

"4P/Nct
max

S. (9)

In the case of receiver-dependent ray counting (r
d

the detector radius),
C according to equation (9) is to be multiplied by the ratio of the room volume and
the receiver volume 3r3

d
</4n.

4. EXAMPLES

To check the plausibility of the algorithm, an extremely #at room serves as an
example. Figure 4 shows decay curves for specular and di!use re#ections at #oor
and ceiling. For comparison, the linear level decay according to Eyring's formula is
added. The results agree well with the results from conventional ray tracing. The
calculation time for post-processing was below 1 s, while the matrices were
determined with 3600 rays, which lasted 2 min.

The second example involves a coupled room. The absorption coe$cients are
uniformly a"0)15. The larger room has a volume <

1
"1000 m3"10]10]10 m3,

the smaller has 1
8

the size with <
2
"125 m3"5]5]5 m3. The opening between

the rooms is a door of 1 m width and 5 m height. The sound source is placed in
a corner of the small room. At "rst, the distribution of free path is discussed (see
Figure 5). Here, the matrix has just the two dimensions of the free paths since the
absorption is uniformly distributed. Due to the fact that the source is located in the
small room, the partial sound "eld up to path lengths of 5 m and the corresponding



Figure 4. Sound propagation curves in a #at room (100]100]4 m3): (a) specular; (b) di!use
re#ections.
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distribution looks very similar to the expectation value of the small room alone.
Projections on one of axes of the distribution between 0 and 5 m path lengths agree
very well with the free path distribution of cubic rooms as illustrated by Kuttru!
[2]. Apart from that, one can see that some rays are entering the large room with in
principle the same path length behaviour; hence a #at distribution between 0 and
8 m and a peak around 10 m path length is obtained.

Finally, Figure 6(b) shows the global energy impulse responses composed
according to equation (7). For comparison, in Figure 6(a) the transition e!ect is
neglected by disabling the transition in the energetic summation. Including the
transition e!ects the decay slopes are estimated almost equally. The intersection of
the two level lines, however, is found to be some decibels lower if transition of
energy is allowed to occur.

5. CONCLUSION

The method of estimating room impulse responses from free path distributions
o!ers promising new insight into the statistical features in geometrical room



Figure 5. Free path distribution matrix of coupled rooms with uniform absorption.

FREE PATH ROOM ACOUSTICAL SIMULATION 135
acoustics. Since the distribution can very easily be recorded by ray tracing, it is
worthwhile to investigate this or similar algorithms in near future. Although not yet
tested, it should be possible to construct receiver-dependent impulse responses
similar to those of Barron's revised theory and, accordingly, room acoustical single
number quantities. In the case of noise control in rooms, the parameter &&strength''
or other normalized levels can be predicted for determination of sound propagation
curves. This is particularly interesting since the method allows extremely
non-di!use spaces to be simulated very quickly. The statistical mean values of free
paths and absorption coe$cients are not needed.

It should be noted, however, that this approach is still a statistical method and
cannot yield exact decay curves. It is intended for an intermediate level of
complexity and accuracy in order to close a gap between complete ray tracing or
image source processes and simple formulae. Therefore, it is quite useful for the
so-called &&electroacoustic simulations'' of public address systems in rooms. Today,
the programs have very nice user interfaces and graphical outputs, but they su!er
from the preposition of the di!use "eld conditions in the late decay.

Further investigations should be focussed on the limitations of the model due to
higher order statistical coupling between the categories, the validity of the spatial
independence of the paths and the temporal development of the spatial energy
density. Further work must be done to adapt this model into room acoustical



Figure 6. Energy decay curves of a coupled room. Examples of individual curves of free path
categories and total decay curve (==). (a) Without transition between the categories; (b) with
transition between the categories.
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simulation software for fast hybrid calculation of early and late parts of impulse
responses.
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